百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Apache Hudi Timeline Server介绍

cac55 2024-09-29 09:26 76 浏览 0 评论

介绍

Hudi 不依赖任何外部第三方服务(如 Zookeeper),因此易于操作。一切都是独立的,并且不存在必须长期运行的服务器组件。启动一个 Spark 集群,摄取一批数据,一切都完全关闭(如果摄取模式是批处理)。但有时,拥有中央服务可能有助于提高表操作效率。因此 Hudi 有一个中央时间线服务器,它与 Driver 程序节点中的主线程一起运行,以协助定期写入和表服务。本文介绍时间线服务器的内容、它解决什么问题以及它如何使一些核心 Hudi 操作受益。

动机

如简介中所示,Hudi 有一个中央时间线服务器,在驱动程序节点中运行并作为 Rest 服务。它有多种好处,第一个用例是提供 FileSystemView api。

Hudi 的核心是维护一个 TableFileSystemView,它暴露 API 来获取给定数据集的文件状态,驱动程序和执行程序将在写入和表服务生命周期的不同时间点查询该状态。中央时间线服务器维护一个缓存的 FSView,每个 Spark 任务都可以轮询该 FSView,从而避免每个 Spark 任务自己加载 FSView,这些 API 响应延迟非常低。如果没有这些API,每个执行器或 Spark 任务可能必须自己构建 FSview,这将导致过多的重复工作,从而影响延迟。

第二个用例是标记(Marker) 实现。Hudi 维护标记来区分 Spark 任务写入的最终数据文件集与由于 Spark 重试而创建的文件。第一个实现是直接标记,实现简单,但在非常大的范围内,我们发现删除标记花费了太多时间。因此我们引入了基于时间线服务器的标记来解决延迟问题。使用基于时间线服务器的标记,删除延迟仅为几秒钟,而在某些情况下使用直接标记需要 30 多分钟。

文件系统视图

Hudi 的核心是维护一个 TableFileSystemView,它暴露 API 来获取给定数据集的文件状态,驱动程序和执行程序将在写入和表服务生命周期的不同时间点查询该状态。一些众所周知的 API 包括:获取所有文件组的最新基本文件、获取给定分区的最新文件切片、获取最新的合并文件切片(在压缩正在进行时有用)、获取最新的挂起压缩操作、获取替换的文件组 (Clustering和其他替换提交操作)等。

TableFileSystemview 有不同的实现,例如内存中的 FSView、基于元数据的 FSview、RockDBBased FSView、基于可溢出映射的 FSView 等。最常见的是内存和元数据 TableFileSystemView。内存表文件系统视图使用文件系统列表查询 Hudi 时间线和数据文件,并填充服务这些 api 所需的所有内部数据结构。基于元数据的文件系统视图使用元数据表而不是直接文件系统列表。所有这些 FSview 都有内置缓存,这意味着一旦为给定分区加载文件组,后续调用就可以从内存数据结构本身提供服务,而不会产生额外的 I/O。但是所有填充的数据结构(缓存)都必须在时间线发生新更改时(新提交完成时)重新加载,这不可避免。因此来自中央时间线服务器的缓存 FSView 通过减少延迟为我们提供了相当高的价值。

FileSystemView 调用的控制流

先看看在没有时间轴服务器的情况下事情会如何发展。假设我们正在操作一个由 1000 个分区组成的表,每个分区有 100 个文件组。会调用如下API

getLatestBaseFile(String partition, String fileID)

5000 个随机文件组。因此 5000 个随机文件组可以分布在不同的分区上。最简单的选择是在驱动程序本身中执行所有内容。但是整个执行将是串行的,这可能会非常慢。换句话说我们可以在 for 循环中以单线程方式获取 5000 个文件组的最新基本文件,而不利用集群资源。让我们利用 Spark 并行执行来实现,因此驱动程序中的典型调用可能如下所示

engineContext.parallelelize(partitionFileIdPairs)
.map(partitionFileIdPair -> {
Build FileSystemView for partition of interest
Fetch latest base file for the fileId of interest and return
}).collect(Collectors.toList())

由于我们利用 Spark 的并行执行,因此与在驱动程序中执行所有操作相比,这应该会加快速度。但我们确实还有进一步优化的空间。由于我们对分布在 1000 个分区中的 5000 个文件组感兴趣,因此大致对每个分区中的 50 个文件组感兴趣。整个调用中最昂贵的操作是构建 FileSystemView。根据上面的 DAG,我们正在 50 个 Spark 任务(与 50 个文件组相关)中为给定分区构建 FileSystemView。

使用 Timeline Server 控制 FileSystemView 调用的流程

位于中心时间轴服务器在消除实例化 FileSystemView 过程中不必要的延迟方面发挥着至关重要的作用。时间线服务器是一个Rest服务,它在同一节点中运行,并在单独的线程中与驱动程序一起处理。所有 FileSystemView 调用都将由该时间线服务器通过 Rest 调用提供服务。执行器会将 FSview 调用路由到位于中心的时间线服务器并返回结果。由于我们还内置了一个缓存层,因此它们往往非常高效,并且避免了 FSview 的重复实例化以及不必要的 I/O。

继续获取 500 个文件组的最新基本文件的示例。当时间线服务器运行并将存储布局设置为 RemoteFileSystemView 时,它可能如下所示。

engineContext.parallelelize(partitionFileIdPairs)
.map(partitionFileIdPair -> {
Make remote request to Timeline server for latest base file for fileId and partition of interest
Return the value obtained as the response
}).collect(Collectors.toList())

在并行线程中,在时间线服务器(REST SERVICE)内:

Receives the request from 5000 spark tasks.
Serves FSview calls for partition of interest if already loaded and cached.
If not, loads the FS view for the given partition of interest.
Serves the response based on the populated data-structures.

正如我们所看到的通过将调用路由到中央时间线服务器来优化对 FSView api 的调用,该服务器提供来自缓存视图的响应。

getLatestBaseFile()只是一个说明。与此类似大多数 FS 视图调用都会路由到中央时间线服务器,并由缓存的 FS 视图提供服务。

基于元数据的 FS 视图

Hudi为每个数据表都有一个元数据表,用于缓存表中的文件列表。如果启用的话,FSview 也可以从元数据表构建。在这种情况下 FS 视图的实例化基于元数据表的 FILES 分区中的数据。这里我们讨论的是时间轴服务器中使用的 FSview 实现。

我们已经确定了一些调用(例如清理器),其中每个分区都将跨所有 Spark 任务加载,因此我们添加了优化以尽可能使用对元数据表的单个调用来预加载所有分区。当表有 1000 个或更多分区时,这会极大地加快 FS 视图调用延迟。

基于时间线服务器的标记

时间线服务器也用作另一个标记实现,在此之前我们有执行器直接操作的直接标记,我们将在其他博客中讨论这个主题。如果感兴趣可以点击此链接讨论基于时间线服务器的标记。

结论

通常操作 Hudi 不需要任何像 Zookeeper 这样需要单独维护的集中运行服务器。在某种程度上时间线服务器是驱动程序节点中长时间运行的服务,用于避免不必要的 I/O,并通过缓存层为 FSview 调用提供服务。

相关推荐

高中生又来卷我们了!手搓 Android 浏览器,可高度定制+脚本支持

回想一下,你曾经的暑假,是怎么度过的?可能是无尽的娱乐时光,或者是懒洋洋的休息日。然而,对于这位Gitee上的高中生来说,他选择在这个暑假里独立开发一款Android浏览器——Vie浏览器,...

网页加载CAD图纸的两个方案对比说明(网页浏览编辑DWG)

一.说明梦想控件提供两种技术在网页中加载CAD图纸,一个是OCX技术方案,另一个是HTML5技术方案,它们各有优缺点,用户需根据实际情况进行选择,下边分别说明一下。1、ocx技术方案(1)OCX技术是...

前后端分离的开源在线考试系统调试实战

开篇在我们的教育生涯中,或多或少的都接触过在线考试系统。例如大学里最常见的各种软件考试,上机考试等,那么有没有开源的这样的系统呢?当然是有了,今天就来调试个开源的在线考试系统。本文重点是调试,因为很多...

网友:小松鼠长大了!UC浏览器推出18周年专版logo引热议

近日,互联网厂商logo更新再次引发热议。作为国内手机浏览器的代表性厂商,UC浏览器的标志性logo小松鼠悄然发生了变化,在网友中引发了关注和讨论。依照UC微博官方账号的说法,这个全新的形象是UC18...

超多案例!谷歌AI模型Nano Banana的5个实用+趣味玩法

再不用这个AI修图神器,你的同行明天就把订单抢光了。谷歌刚放出的NanoBanana,能在一张照片里把背景、姿势、衣服一次换完,脸还是那张脸。实测把地铁照改成海边大片,只用一句话,三秒出图,不用PS来...

2025年最佳Windows数据恢复软件解决方案前5名

您是否正在寻找互联网上排名前五的WindowsPC最佳数据恢复软件解决方案?其实,网上有很多工具可以恢复已删除的文件。但并非所有应用程序都值得使用。值得信赖的文件恢复工具可以帮助您快速检索丢失、删...

电脑数据恢复软件推荐:10个顶级数据恢复软件分享

在数字化的工作与生活中,电脑文件误删除的情况时有发生,这不仅会引发我们的焦虑情绪,更可能导致重要数据的丢失。不过,幸运的是,借助正确的数据恢复软件,我们仍有机会找回那些被误删的文件。10个顶级数据恢复...

更懂国内APP的开源智能体!感知定位推理中文能力全面提升

更懂国内APP的开源智能体!感知定位推理中文能力全面提升“帮我点外卖,别点到广告位。”一句话,说出了多少人对手机自动化的真实期待。浙大和美团刚扔出来的开源项目UItron,就是冲着这句吐槽来的——它真...

美光首家推出采用EUV技术的1γ DDR5 DRAM芯片

美光科技宣布已开始向部分生态系统合作伙伴和客户出货1γ(1-gamma)16GbitDDR5DRAM芯片。美光声称,它是第一个采用1-gamma(1γ)节点的公司,该节点指的是DRAM工艺技术的第...

DDR4的PCB设计及仿真_ddr pcb

以下文章来源于鼎阳硬件智库,作者王彦武DDR4关键技术和方法分析1.1DDR4与DDR3不同之处相对于DDR3,DDR4首先在外表上就有一些变化,比如DDR4将内存下部设计为中间稍微突出,边缘变...

DDR4和DDR5内存的性能差距有哪些?

DDR4和DDR5内存的性能差距主要体现在带宽、延迟、能效及未来扩展性上,以下是关键差异的总结及选择建议:1.带宽与频率DDR4:主流频率为2133MHz–3600MHz,带宽约25.6–30.2...

DDR5内存一根和两根的区别,建议收藏观看。

大家好,我是海韵,DDR5内存条,单条和双条有什么区别,如何选择,DDR5单条和双条内存在性能上存在差距,单条内存保持在64个通道,但内部升级为32乘以2,虽然出口速度相同,但内部运行略有提升,...

Kingston FURY叛逆者DDR5 RGB CUDIMM内存评测 强势突破9000MT/s!

【ZOL中关村在线原创评测】当8000MT/s从当年的液氮超频艰难达成,到如今XMP轻松开启,DDR5内存频率的极限探索似乎看不到终点。在早先,我们曾为大家带来KingstonFURY品牌的叛逆者D...

SK海力士将在年内推出1bnm 32Gb DDR5内存颗粒

IT之家4月25日消息,据韩媒NEWSIS报道,SK海力士在今日的2024年一季度财报电话会议上表示将在年内推出1bnm32GbDDR5内存颗粒。32Gb颗粒意味着消费级的...

DRAM史上最大代际倒挂继续:三星将延长DDR4生产期限至2026年

IT之家8月6日消息,韩媒TheElec今天(8月6日)发布博文,报道称三星决定延长DDR41zDRAM的生产期限至2026年,一方面在DRAM史上最大代际倒挂中进...

取消回复欢迎 发表评论: