百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

JAVA技术分享:单号的生成(java生成递增单号)

cac55 2024-10-20 04:21 15 浏览 0 评论

一.订单号生成的原则:

1.全局的唯一性

2.自增长

3.长度的要求

4.具有一定的可读性

5.保密,不可推测性

6.效率性

二.实现方案

常见的ID生成策略。 1. 数据库自增长序列或字段 2. UUID 3. UUID的变种*【UUID to Int64;NHibernate在其主键生成方式中提供了Comb算法(combined guid/timestamp)】 4. Redis生成ID 5. Twitter的snowflake算法 6. 利用zookeeper的znode生成唯一ID 7. MongoDB的ObjectId

三.高并发下怎样生成唯一的订单号?

如果没有并发,订单号只在一个线程内产生,那么由于程序是顺序执行的,不同订单的生成时间一定不同,因此用时间就可以区分各个订单。

如果存在并发,且订单号是由一个进程中的多个线程产生的,那么只要把线程ID添加到序列号中就可以保证订单号唯一。

如果存在并发,且订单号是由同一台主机中的多个进程产生的,那么只要把进程ID添加到序列号中就可以保证订单号唯一。

如果存在并发,且订单号是由不同台主机产生的,那么MAC地址、IP地址或CPU序列号等能够区分主机的号码添加到序列号中就可以保证订单号唯一。

1. 机器码(3位, 分布式节点),年月日分时秒(12位),递增的序列(4位),当并发递增序列超过4位时,秒数+1,序列从0开始计时,这样每秒支持9999个订单号生成,隔天序列清为0.

2.后台统一生成的订单号后,推入redis,一次性推个几十W个,检查剩余多少后,再推,也可以保证高并发的场景。

四.Twitter开源分布式自增ID算法snowflake

1.snowflake简介

互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大;比如某些银行类业务,需要按每日日期制定交易流水号;又比如我们希望用户的ID是随机的,无序的,纯数字的,且位数长度是小于10位的。等等,不同的业务场景需要的ID特性各不一样,于是,衍生了各种ID生成器,但大多数利用数据库控制ID的生成,性能受数据库并发能力限制,那么有没有一款不需要依赖任何中间件(如数据库,分布式缓存服务等)的ID生成器呢?本着取之于开源,用之于开源的原则,今天,特此介绍Twitter开源的一款分布式自增ID算法snowflake,并附上算法原理推导和演算过程!

snowflake算法是一款本地生成的(ID生成过程不依赖任何中间件,无网络通信),保证ID全局唯一,并且ID总体有序递增,性能每秒生成300w+。

2.snowflake算法原理

snowflake生产的ID是一个18位的long型数字,二进制结构表示如下(每部分用-分开):

0 - 00000000 00000000 00000000 00000000 00000000 0 - 00000 - 00000 - 00000000 0000

第一位未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年,从1970-01-01 08:00:00),然后是5位datacenterId(最大支持2^5=32个,二进制表示从00000-11111,也即是十进制0-31),和5位workerId(最大支持2^5=32个,原理同datacenterId),所以datacenterId*workerId最多支持部署1024个节点,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生2^12=4096个ID序号).

所有位数加起来共64位,恰好是一个Long型(转换为字符串长度为18).

单台机器实例,通过时间戳保证前41位是唯一的,分布式系统多台机器实例下,通过对每个机器实例分配不同的datacenterId和workerId避免中间的10位碰撞。最后12位每毫秒从0递增生产ID,再提一次:每毫秒最多生成4096个ID,每秒可达4096000个。理论上,只要CPU计算能力足够,单机每秒可生产400多万个,实测300w+,效率之高由此可见。

(该节改编自:http://www.cnblogs.com/relucent/p/4955340.html)

3.snowflake算法源码(java版)

@ToString
@Slf4j
public class SnowflakeIdFactory {
 
    private final long twepoch = 1288834974657L;
    private final long workerIdBits = 5L;
    private final long datacenterIdBits = 5L;
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private final long sequenceBits = 12L;
    private final long workerIdShift = sequenceBits;
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
 
    private long workerId;
    private long datacenterId;
    private long sequence = 0L;
    private long lastTimestamp = -1L;
 
 
 
    public SnowflakeIdFactory(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
 
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            //服务器时钟被调整了,ID生成器停止服务.
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
 
        lastTimestamp = timestamp;
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
    }
 
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    protected long timeGen() {
        return System.currentTimeMillis();
    }
 
    public static void testProductIdByMoreThread(int dataCenterId, int workerId, int n) throws InterruptedException {
        List<Thread> tlist = new ArrayList<>();
        Set<Long> setAll = new HashSet<>();
        CountDownLatch cdLatch = new CountDownLatch(10);
        long start = System.currentTimeMillis();
        int threadNo = dataCenterId;
        Map<String,SnowflakeIdFactory> idFactories = new HashMap<>();
        for(int i=0;i<10;i++){
            //用线程名称做map key.
            idFactories.put("snowflake"+i,new SnowflakeIdFactory(workerId, threadNo++));
        }
        for(int i=0;i<10;i++){
            Thread temp =new Thread(new Runnable() {
                @Override
                public void run() {
                    Set<Long> setId = new HashSet<>();
                    SnowflakeIdFactory idWorker = idFactories.get(Thread.currentThread().getName());
                    for(int j=0;j<n;j++){
                        setId.add(idWorker.nextId());
                    }
                    synchronized (setAll){
                        setAll.addAll(setId);
                        log.info("{}生产了{}个id,并成功加入到setAll中.",Thread.currentThread().getName(),n);
                    }
                    cdLatch.countDown();
                }
            },"snowflake"+i);
            tlist.add(temp);
        }
        for(int j=0;j<10;j++){
            tlist.get(j).start();
        }
        cdLatch.await();
 
        long end1 = System.currentTimeMillis() - start;
 
        log.info("共耗时:{}毫秒,预期应该生产{}个id, 实际合并总计生成ID个数:{}",end1,10*n,setAll.size());
 
    }
 
    public static void testProductId(int dataCenterId, int workerId, int n){
        SnowflakeIdFactory idWorker = new SnowflakeIdFactory(workerId, dataCenterId);
        SnowflakeIdFactory idWorker2 = new SnowflakeIdFactory(workerId+1, dataCenterId);
        Set<Long> setOne = new HashSet<>();
        Set<Long> setTow = new HashSet<>();
        long start = System.currentTimeMillis();
        for (int i = 0; i < n; i++) {
            setOne.add(idWorker.nextId());//加入set
        }
        long end1 = System.currentTimeMillis() - start;
        log.info("第一批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setOne.size(),end1);
 
        for (int i = 0; i < n; i++) {
            setTow.add(idWorker2.nextId());//加入set
        }
        long end2 = System.currentTimeMillis() - start;
        log.info("第二批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setTow.size(),end2);
 
        setOne.addAll(setTow);
        log.info("合并总计生成ID个数:{}",setOne.size());
 
    }
 
    public static void testPerSecondProductIdNums(){
        SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);
        long start = System.currentTimeMillis();
        int count = 0;
        for (int i = 0; System.currentTimeMillis()-start<1000; i++,count=i) {
            /**  测试方法一: 此用法纯粹的生产ID,每秒生产ID个数为300w+ */
            idWorker.nextId();
            /**  测试方法二: 在log中打印,同时获取ID,此用法生产ID的能力受限于log.error()的吞吐能力.
             * 每秒徘徊在10万左右. */
            //log.error("{}",idWorker.nextId());
        }
        long end = System.currentTimeMillis()-start;
        System.out.println(end);
        System.out.println(count);
    }
 
    public static void main(String[] args) {
        /** case1: 测试每秒生产id个数?
         *   结论: 每秒生产id个数300w+ */
        //testPerSecondProductIdNums();
 
        /** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复?
         *   结论: 验证通过,没有重复. */
        //testProductId(1,2,10000);//验证通过!
        //testProductId(1,2,20000);//验证通过!
 
        /** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复?
         *   结论: 验证通过,没有重复. */
        try {
            testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半!
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
 
    }
}

测试用例

/** case1: 测试每秒生产id个数?
 *   结论: 每秒生产id个数300w+ */
//testPerSecondProductIdNums();
 
/** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复?
 *   结论: 验证通过,没有重复. */
//testProductId(1,2,10000);//验证通过!
//testProductId(1,2,20000);//验证通过!
 
/** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复?
 *   结论: 验证通过,没有重复. */
try {
    testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半!
} catch (InterruptedException e) {
    e.printStackTrace();
}
 

4.snowflake算法推导和演算过程
说明:
演算使用的对象实例:SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);
运行时数据workerId=1,datacenterId=2,分别表示机器实例的生产者编号,数据中心编号;
sequence=0表示每毫秒生产ID从0开始计数递增;
以下演算基于时间戳=1482394743339时刻进行推导。
一句话描述:以下演算模拟了1482394743339这一毫秒时刻,workerId=1,datacenterId=2的id生成器,生产第一个id的过程。

相关推荐

MIRIX重塑AI记忆:超Gemini 410%,节省99.9%内存,APP同步上线

MIRIX,一个由UCSD和NYU团队主导的新系统,正在重新定义AI的记忆格局。在过去的十年里,我们见证了大型语言模型席卷全球,从写作助手到代码生成器,无所不能。然而,即使最强大的模型依...

硬盘坏了怎么把数据弄出来对比10种硬盘数据恢复软件

机械硬盘或固态硬盘损坏导致数据丢失时,应立即停止对硬盘的读写操作,并根据损坏类型选择逻辑层恢复工具或专业物理恢复服务。紧急处置措施立即停止通电使用:发现硬盘异响、无法识别或数据异常时,需立即断开连接,...

蓝宝石B850A WIFI主板新玩法:内存小参调节体验

蓝宝石前段时间发布了一款性价比极高的主板:NITRO氮动B850AWIFI主板。这款主板的售价只要1349元,相比普遍1500元以上的B850主板,确实极具竞争力。虽然价格实惠,蓝宝石NITR...

内存卡损坏读不出怎么修复?这5个数据恢复工具汇总,3秒挽回!

在数字化生活的浪潮中,内存卡凭借小巧便携与大容量存储的特性,成为相机、手机、行车记录仪等设备存储数据的得力助手,承载着无数珍贵回忆与重要文件。然而,当内存卡突然损坏无法读取,无论是误删、格式化、病毒入...

内存卡修复不再难,2025年必学的6款软件工具

内存卡出现问题时,通常是因为文件系统损坏、物理损坏或病毒感染。通过专业的修复工具,我们可以尝试恢复数据并修复内存卡。内存卡修复利器:万兴恢复专家万兴恢复专家是一款功能强大的数据恢复软件,支持多种设备和...

有5款内存卡修复工具汇总,内存卡数据轻松找回!

在如今的数字时代,内存卡作为不可或缺的存储介质,广泛应用于相机、手机、行车记录仪等各类设备中,承载着我们珍贵的照片、视频以及重要文件。然而,数据丢失的风险却如影随形,误删、格式化、病毒入侵、硬件故障等...

揭秘:如何通过多种方式精准查询内存条型号及规避风险?

以下是内存条型号查询的常用方法及注意事项,综合了物理查看、软件检测、编码解析等多种方式:一、物理标签查看法1.拆机查看标签打开电脑主机/笔记本后盖找到内存条,观察标签上的型号标识。例如内存标签通常标...

内存卡数据恢复5个工具汇总推荐,轻松找回珍贵记忆!

在这个数字化时代,内存卡作为我们存储珍贵照片、重要文件的常用载体,广泛应用于手机、相机、平板电脑等设备。但数据丢失的意外却常常不期而至,误删除、格式化、病毒攻击,甚至内存卡的物理损坏,都可能让辛苦保存...

电脑内存智能监控清理,优化性能的实用软件

软件介绍Memorycleaner是一款内存清理软件。功能很强,效果很不错。Memorycleaner会在内存用量超出80%时,自动执行“裁剪进程工作集”“清理系统缓存”以及“用全部可能的方法清理...

TechPowerUp MemTest64:内存稳定性测试利器

TechPowerUpMemTest64:内存稳定性测试利器一、软件简介TechPowerUpMemTest64,由知名硬件信息工具GPU-Z的出品公司TechPowerUp发布,是一款专为64位...

微软推出AI恶意软件检测智能体Project Ire,精确度高达98%

IT之家8月6日消息,当地时间周二,微软宣布推出可自主分析恶意软件的AI检测系统原型——ProjectIre。该项目由微软研究院、Defender研究团队及Discovery&a...

农村老木匠常用的20种老工具,手艺人靠它养活一家人,你认识几种

生活中的手艺老匠人是非常受到尊敬和崇拜的,特别是在农村曾经的老匠人都是家里的“座上宾”。对于民间传统的手艺人,有一种说法就是传统的八大匠:木匠、泥匠、篾匠、铁匠、船匠、石匠、油匠和剃头匠。木匠的祖始爷...

恶意木马新变种伪装成聊天工具诱人点击

国家计算机病毒应急处理中心通过对互联网监测发现,近期出现一种恶意木马程序变种Trojan_FakeQQ.CTU。该变种通过伪装成即时聊天工具,诱使计算机用户点击运行。该变种运行后,将其自身复制到受感染...

学习网络安全 这些工具你知道吗?

工欲善其事必先利其器,在新入门网络安全的小伙伴而言。这些工具你必须要有所了解。本文我们简单说说这些网络安全工具吧!Web安全类web类工具主要是通过各种扫描工具,发现web站点存在的各种漏洞...

5分钟盗走你的隐私照片,这个全球性漏洞到底有多可怕?

这个时代,大家对电脑出现漏洞,可能已经习以为常。但如果机哥告诉大家,这个漏洞能够在5分钟内,破解并盗取你所有加密文件,而且还无法通过软件和补丁修复...这可就有点吓人啦。事情是酱婶的。来自荷兰埃因...

取消回复欢迎 发表评论: