百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

CD4011芯片功能介绍,CD4011 引脚图及作用,一文教你读懂CD4011

cac55 2024-11-11 10:37 88 浏览 0 评论

我是小七,干货满满。大家不要错过,建议收藏,错过就不一定找得到了,内容仅供参考,图片记得放大观看。

如果有什么错误或者不对,欢迎各位大佬指点

今天是CD4011芯片,主要是以下几个方面:

  • 1、CD4011 是什么芯片
  • 2、CD4011 引脚图及作用
  • 3、CD4011 3D 模型
  • 4、CD4011 芯片功能介绍
  • 5、CD4011 特性参数
  • 6、CD4011 最简单电路图
  • 7、CD4011 振荡电路原理
  • 8、CD4011 与非门逻辑电路
  • 9、CD4011 声光控制电路图
  • 10、CD4011 蜂鸣器电路

一、CD4011 是什么芯片?

CD4011 芯片带有四个独立的与非门。需要注意的是,该 IC 的输出电压和工作电压是相等的。该芯片广泛用于许多电路中,包括 mp3 播放器、AV 接收器、蓝光播放器和家庭影院。

  • 如果你想将此芯片用作逻辑反相器,你可以将 NAND 门重新配置为 NOT 门。
  • 更短的转换时间使该器件成为高速应用的最佳选择。
  • 该器件的典型工作电压为 5V,采用 14 引脚 PDIPGDIPPDSO 封装
  • 工作电压范围为 -55 至 125C,传播延迟时间为 60ns。

器件以正逻辑执行布尔函数 Y = A × B 或 Y = A + B。该 IC 用于 AV 接收器、便携式音频基座和蓝光播放器。

二、CD4011引脚图及作用

三、CD4011 3D模型

1、CD4011 电路符号

2、CD4011 封装尺寸

3、CD4011 3D模型

四、CD4011 芯片功能介绍

1、什么是与非门?

与非门是一种逻辑门,其工作方式类似于与门,输出端有一个非门。因此它通常被称为 NOT-AND。

由 AND 和 NOT 门构建的 NAND 门。

与门的任何输出都由非门反转。因此,简单地说,与非门是一种逻辑门,仅当所有输入为高时才提供低输出,如下面的真值表所示。

与非门用于设计广泛的逻辑功能,包括 SR 锁存器和 D 触发器。你经常会看到连接两个输入以创建一个输入的电路示例。这将 NAND 转换成一个非门,将输入反转。

2、如何使用 CD4011?

首先,你需要一个 3 到 15V 的电源电压。某些版本的芯片支持高达 20V。检查你的芯片版本的数据表以获取确切值。

为了能够使用芯片中的任何与非门,你需要首先将 VDD 引脚连接 到正电源端子,将 GND 引脚连接 到负电源端子。A 和 B 引脚 是 IC 中四个与非门的输入。Q 引脚 是 NAND 门的输出。

CD4011 12 个输入输出引脚,用于四个与非门。要使用 CD4011 IC,只需使用 Vcc 和接地引脚为其供电。IC的典型工作电压为+5V,但也可以工作在+7V。输出引脚上 IC 的输出电压将等于 IC 的工作电压。根据与非门真值表,当门的两个输入均为低电平时,输出将为高电平,否则为低电平。

五、CD4011 特性参数

  • 双输入与非门——四通道封装
  • 典型工作电压:5V
  • 高电平输出电流:- 1.5 mA
  • 低电平输出电流:1.5mA
  • 传播延迟时间:60 ns(典型值),CL = 50 pF,VDD = 10 V
  • 工作温度范围:- 55 C to + 125 C
  • 可用封装:14-pin PDIP、GDIP、PDSO
  • 缓冲输入和输出
  • 标准化对称输出特性
  • 在18 V的全封装温度范围内最大输入电流为1 μA;18 V 和 25°C 时为 100 nA
  • 100% 的 20 V 静态电流测试
  • 5V、10V 和 15V 参数额定值
  • 噪声容限(在整个封装温度范围内:VDD = 5 V 时 -1 V;VDD = 10 V 时 -2 V;-2.5 在 VDD = 15 V。

六、CD4011 最简单电路图

下图是一个可以使用 NAND 门构建的实际示例,在以下电路中,有两个触摸传感器;一个用于打开 LED,另一个用于关闭 LED。

该电路使用两个 NAND 门设置为由两个触摸传感器设置或重置的锁存器

所需的元器件清单:

  • 一个 LED (L1)
  • 带有与非门的芯片,例如 CD4011BE
  • 3 个 10 kΩ 电阻 (R1-R3)
  • 2 x 两个金属板靠在一起形成触摸传感器

七、CD4011 振荡电路原理

1、CD4011 振荡电路原理

在任何模拟和数字电路中,都会通过反馈产生振荡。也是这种情况下,我们使用 R1、C2 将电流输出反馈到输入导致振荡。

下图为 CD4011 振荡电路原理:

  • 我们假设 IC1a 或引脚 3 的输出逻辑为“1”,所以 IC1b 或引脚 4 的输出为“0”,然后,引脚 3 上的电压将开始通过 R1 为 C1 充电。
  • 但 C1 也连接到门 1 的输入,最终,充电 C1 将变为“1”,足以将 IC1a 的输出从“1”切换为“0”逻辑。
  • 这导致 IC1b 改变状态,其输出变为“1”。现在 C1 由 IC1b 的输出放电。最终,C1 和 R1 处的电压变为“0”,IC1a 切换回之前的状态。然后将返回并按循环继续。
  • 如果我们降低电源电压会降低音量输出。我们可以在 3V 到 15V 之间使用。
  • 我们应该将未使用的 IC-4011 输入(引脚 8、9、12 和 13)接地。
  • 这种压控振荡器设计基于 CMOS 集成电路 CD4011。该振荡器提供了相当好的线性度,其电流消耗非常低。电源电压范围为 5 至 15 伏。该电路可以用作频率调制器。
  • 振荡器的输出频率取决于R1、R2、C1的参数和电源电压。

2、CD4011 压控振荡器电路

该电路包括两个基于 NAND 门的 RS 锁存器 - DD1.1、DD2.1 和 DD3.1、DD4.1。如果输出 OUT1 为低电平,则输出 OUT2 为高电平,二极管 D2 不导通电流。

管脚 1 的逻辑电平为高,电容 C1 放电。引脚 6 的逻辑电平从高变为低,因此引脚 4 和 3 的逻辑电平也发生变化。电容 C1 以相反的极性充电(充电电流通过逻辑门输入端的保护二极管)。

该电路产生的脉冲幅度取决于电源电压,其频率取决于控制电压源 U ctrl。如果 U ctrl则提供中频=0。注意,如果改变二极管D1、D2的极性,控制电压U ctrl应相对于电源电压+U施加。

DD1-CD4011;D1,D2 - 1N4148;

R1、R2 - 100k;C1 - 4.7nF;C2、C3 - 0.1 μF;

±U ctrl = -1.5..3 +U = 5 V;

+U = 5..15 V

压控振荡器电路工作频率上限取决于R1R2C1和集成电路DD1参数。最高工作频率可达数MHz,对于 5 V 的电源电压,频率与电压的比约为 360 Hz/V。

八、CD4011 的与非门逻辑电路

首先,我们必须给 4011 NAND 门芯片供电。我们将为它提供 5V 的电源,因此我们将 +5V 提供给引脚 14,并将引脚 7 连接到 GND。这为芯片建立了电源。

我们为每个按钮连接一个 10KΩ 电阻,这些电阻用作上拉电阻。它们将按钮上拉至 V CC,即逻辑电平 1,因此按钮通常具有明确定义的逻辑高(或 1)状态。

当按下按钮时,电阻还可以防止 Vcc 直接短路到地。因此,当按钮单独未按下时,其逻辑值通常为 1。因此,当两者均未按下时,将 2 个逻辑高(或 1)值输入到与非门,这意味着 NAND 将产生低(或 0)输出。请记住,两个逻辑高电平将为与非门产生逻辑低电平输出。因此,与非门不会为负载通电,因此当两个按钮都没有按下时,LED 将熄灭。

当按下按钮时,按钮现在与地面接触。相应的输入引脚现在将接地,其逻辑电平将变为逻辑低电平(现在它与地面接触)。当其中一个或两个按钮被按下时,与非门将输出逻辑高电平(或 1),连接到输出的负载将通电。因此在这种情况下 LED 会亮起。

九、CD4011 声光控制电路图

制作 LED 闪光灯电路需要以下组件:

CD4011 IC在电路中作为多谐振荡器接线,IC的栅极B和栅极D的产量由晶体管通过1K电阻处理,每个晶体管通过470欧姆限流电阻驱动两个LED。该电路的工作电压为9V DC。通过使用更高的 NPN 晶体管,例如BD139或 TIP31 ,可以额外扩展 LED 的数量。

十、CD4011 蜂鸣器电路

制作蜂鸣器电路需要以下组件:

蜂鸣器电路:

工作说明:

该电路的核心是通过 CD4011 IC 工作的 2 个 NAND 门。在这里,2 个 NAND 门连接为一个非稳态多谐振荡器,因此 IC 引脚 4 的输出连续变高和变低。

这会连续切换为压电蜂鸣器提供驱动的 2N4401 晶体管(开和关)。因此,压电蜂鸣器发出蜂鸣声,LED 持续闪烁。

以上就是今天的内容,大家记得关注,给我点赞哦,欢迎大家在评论区留言,请各位大佬多多指教

相关推荐

Mac电脑强制删除任何软件方法-含自启动应用

对于打工者来说,进入企业上班使用的电脑大概率是会被监控起来,比如各种流行的数据防泄漏DLP,奇安信天擎,甚至360安全卫士,这些安全软件你想卸载是非常困难的,甚至卸载后它自己又安装回来了,并且还在你不...

Linux基础知识 | 文件与目录大全讲解

1.linux文件权限与目录配置1.文件属性Linux一般将文件可存取的身份分为三个类别,分别是owner/group/others,且三种身份各read/write/execute等权限文...

文件保护不妥协:2025 年 10 款顶级加密工具推荐

数据安全无小事,2025年这10款加密工具凭借独特功能脱颖而出,从个人到企业场景全覆盖,第一款为Ping32,其余为国外英文软件。1.Ping32企业级加密核心工具,支持200+文件格...

省心省力 一个软件搞定系统维护_省心安装在哪里能找到

◆系统类似于我们居住的房间,需要经常打理才能保持清洁、高效。虽然它本身也自带一些清理和优化的工具,但借助于好用的第三方工具来执行这方面的任务,会更让人省心省力。下面笔者就为大家介绍一款集多项功能于一身...

JAVA程序员常用的几个工具类_java程序员一般用什么软件写程序

好的工具做起事来常常事半功倍,下面介绍几个开发中常用到的工具类,收藏一下,也许后面真的会用到。字符串处理:org.apache.commons.lang.StringUtilsisBlank(Char...

手工解决Windows10的若干难题_windows10系统卡顿怎么解决

【电脑报在线】很多朋友已经开始使用Win10,估计还只是测试版本的原因,使用过程中难免会出现一些问题,这里介绍解决一些解决难题的技巧。技巧1:让ProjectSpartan“重归正途”从10074...

System32文件夹千万不能删除,看完这篇你就知道为什么了

C:\Windows\System32目录是Windows操作系统的关键部分,重要的系统文件存储在该目录中。网上的一些恶作剧者可能会告诉你删除它,但你不应该尝试去操作,如果你尝试的话,我们会告诉你会发...

Windows.old 文件夹:系统备份的解析与安全删除指南

Windows.old是Windows系统升级(如Win10升Win11)或重装时,系统自动在C盘创建的备份文件夹,其核心作用是保留旧系统的文件、程序与配置,为“回退旧系统”提供保...

遇到疑难杂症?Windows 10回收站问题巧解决

回收站是Windows10的一个重要组件。然而,我们在使用过程中,可能会遇到一些问题。例如,不论回收站里有没有文件,都显示同一个图标,让人无法判别回收站的空和满的真实情况;没有了像Windows7...

卸载软件怎么彻底删掉?简单几个步骤彻底卸载,电脑小白看过来

日常工作学习生活中,我们需要在安装一些软件程序,但随着软件的更新迭代速度,很多时候我们需要重新下载安装新的程序,这时就需要将旧的一些软件程序进行卸载。但是卸载软件虽然很简单,但是很多小伙伴们表示卸载不...

用不上就删!如何完全卸载OneDrive?

作为Windows10自带的云盘,OneDrive为资料的自动备份和同步提供了方便。然而,从隐私或其他方面考虑,有些人不愿意使用OneDrive。但Windows10本身不提供直接卸载OneDri...

【Linux知识】Linux下快速删除大量文件/文件夹方法

在Linux下,如果需要快速删除大量文件或文件夹,可以使用如下方法:使用rm命令删除文件:可以使用rm命令删除文件,例如:rm-rf/path/to/directory/*这个命令会递...

清理系统不用第三方工具_清理系统垃圾用什么软件

清理优化系统一定要借助于优化工具吗?其实,手动优化系统也没有那么神秘,掌握了方法和技巧,系统清理也是一件简单和随心的事。一方面要为每一个可能产生累赘的文件找到清理的方法,另一方面要寻找能够提高工作效率...

系统小技巧:软件卸载不了?这里办法多

在正常情况下,我们都是通过软件程序组中的卸载图标,或利用控制面板中的“程序和功能”模块来卸载软件的。但有时,我们也会发现利用卸载图标无法卸载软件或者卸载图标干脆丢失找不到了,甚至控制面板中卸载软件的功...

麒麟系统无法删除文件夹_麒麟系统删除文件权限不够

删除文件夹方法例:sudorm-rf文件夹名称。删除文件方法例:sudorm-r文件名包括扩展名。如果没有权限,给文件夹加一下权限再删。加最高权限chmod775文件名加可执行权限...

取消回复欢迎 发表评论: