Prometheus+SpringBoot应用监控全过程详解
cac55 2024-12-20 13:43 34 浏览 0 评论
1. Prometheus是什么
Prometheus是一个具有活跃生态系统的开源系统监控和告警工具包。一言以蔽之,它是一套开源监控解决方案。
Prometheus主要特性:
- 多维数据模型,其中包含由指标名称和键/值对标识的时间序列数据
- PromQL,一种灵活的查询语言
- 不依赖分布式存储; 单服务器节点是自治的
- 时间序列收集通过HTTP上的pull模型进行
- 通过中间网关支持推送(push)时间序列
- 通过服务发现或静态配置发现目标
- 支持多种模式的图形和仪表盘
为什么用pull(拉取)而不用push(推送)呢?
因为,pull有以下优势:
- 进行更改时,可以在笔记本电脑上运行监控
- 可以更轻松地判断目标是否下线
- 可以手动转到目标并使用Web浏览器检查其运行状况
目标暴露HTTP端点,Prometheus服务端通过HTTP主动拉取数据。既然是服务端自己主动向目标拉取数据,那么服务端运行在本地(我们自己的电脑上)也是可以的,只要能访问目标端点即可,同时就像心跳检测一样可以判断目标是否下线,还有,服务端自己主动拉取,那么想拉取谁的数据就拉取谁的数据,因而可以随意切换拉取目标。
回想一下Skywalking是怎么做的,SkyWalking有客户端和服务端,需要在目标服务上安装探针(agent),探针采集目标服务的指标数据,上报给服务端OAP服务,这个对目标有一定的侵入性,不过可以接受。Prometheus不需要探针,可以借助push gateway来实现push效果。
对了,有个名词要先说清楚,metrics (译:度量,指标),个人更倾向于把它翻译成指标,后面说指标就是metrics
2. 基本概念
2.1. 数据模型
Prometheus基本上将所有数据存储为时间序列:具有时间戳的值流,它们属于同一个指标和同一组标记的维度。除了存储的时间序列外,Prometheus还可以生成临时派生的时间序列作为查询的结果。
Metric names and labels
Every time series is uniquely identified by its metric name and optional key-value pairs called labels.
每个时间序列都由它的指标名称和称为标签的可选键/值对唯一标识。
样本构成实际的时间序列数据。 每个样本包括:
- 一个64位的浮点值
- 一个毫秒时间戳
给定指标名称和一组标签,时间序列通常使用这种符号来标识:
<metric name>{<label name>=<label value>, ...}
例如,有一个时间序列,指标名称是api_http_requests_total,标签有method="POST"和handler="/messages",那么它可能被表示成这样:
api_http_requests_total{method="POST", handler="/messages"}
2.2. 指标类型
Counter
counter是一个累积量度,代表一个单调递增的计数器,其值只能增加或在重新启动时重置为零。例如,可以使用计数器来表示已服务请求数,已完成任务或错误的数量。
不要使用计数器来显示可以减小的值。例如,请勿对当前正在运行的进程数使用计数器,代替的应该使用量规。
Gauge
量规是一种指标,代表可以任意上下波动的单个数值。
量规通常用于测量值,例如温度或当前内存使用量,还用于可能上升和下降的“计数”,例如并发请求数。
Histogram
直方图对观察结果(通常是请求持续时间或响应大小)进行抽样,并在可配置的桶中对它们进行计数。它还提供了所有观测值的总和。
一个基础指标名称为<basename>的直方图在抓取期间会暴露多个时间序列:
- 观察桶的累积计数器,表示为 <basename>_bucket{le="<upper inclusive bound>"}
- 所有观测值的总和,表示为 <basename>_sum
- 观察到的事件数量,表示为 <basename>_count
Summary
与直方图类似,摘要对观察结果(通常是请求持续时间和响应大小等内容)进行抽样分析。虽然它还提供了观测值的总数和所有观测值的总和,但它可以计算滑动时间窗口内的可配置分位数。
一个基础指标名称为<basename>的摘要在抓取期间暴露多个时间序列:
- 观测事件的φ分位数(0≤φ≤1)流,表示为<basename>{quantile="<φ>"}
- 所有观测值的总和,表示为 <basename>_sum
- 观察到的事件数,表示为 <basename>_count
2.3. 作业和实例
在Prometheus的术语中,可以抓取的端点称为实例,通常对应于单个进程。具有相同目的的实例集合,称为作业。
例如,一个作业有四个实例:
- job: api-serverinstance 1: 1.2.3.4:5670instance 2: 1.2.3.4:5671instance 3: 5.6.7.8:5670instance 4: 5.6.7.8:5671
当Prometheus抓取目标时,它会自动在抓取的时间序列上附加一些标签,以识别被抓取的目标:
- job:目标所属的已配置的作业名称
- instance:被抓取的目标URL的<host>:<port>部分
3. 安装与配置
Prometheus通过抓取指标HTTP端点从目标收集指标。由于Prometheus以相同的方式暴露自己的数据,因此它也可以抓取并监视其自身的健康状况。
默认情况下,不用更改配置,直接运行就可以抓取prometheus自身的健康状况数据
# Start Prometheus.
# By default, Prometheus stores its database in ./data (flag --storage.tsdb.path)
./prometheus --config.file=prometheus.yml
直接访问 localhost:9090
访问 localhost:9090/metrics 可以查看各项指标
举个例子
输入以下表达式,点“Execute”,可以看到以下效果
prometheus_target_interval_length_seconds
这应该返回多个不同的时间序列(以及每个序列的最新值),每个序列的指标名称均为prometheus_target_interval_length_seconds,但具有不同的标签。
这个是以图形化的方式展示指标,通过localhost:9090/metrics查看也是一样的
如果我们只对99%的延迟感兴趣,我们可以使用以下查询:
prometheus_target_interval_length_seconds{quantile="0.99"}
为了计算返回的时间序列数,查询应该这样写:
count(prometheus_target_interval_length_seconds)
接下来,让我们利用Node Exporter来多添加几个目标:
tar -xzvf node_exporter-*.*.tar.gz
cd node_exporter-*.*
# Start 3 example targets in separate terminals:
./node_exporter --web.listen-address 127.0.0.1:8080
./node_exporter --web.listen-address 127.0.0.1:8081
./node_exporter --web.listen-address 127.0.0.1:8082
接下来,配置Prometheus来抓取这三个新目标
首先,定义一个名为'node'的作业,这个作业负责从这三个目标端点抓取数据。假设,想象前两个端点是生产环境的,另一个是非生产环境的,为了以示区别,我们将其打上两个不同的标签。在本示例中,我们将group="production"标签添加到第一个目标组,同时将group="canary"添加到第二个目标。
scrape_configs:
- job_name: 'node'
# Override the global default and scrape targets from this job every 5 seconds.
scrape_interval: 5s
static_configs:
- targets: ['localhost:8080', 'localhost:8081']
labels:
group: 'production'
- targets: ['localhost:8082']
labels:
group: 'canary'
3.1. 配置
为了查看所有的命令行参数,运行如下命令
./prometheus -h
配置文件是YAML格式的,可以使用 --config.file参数指定
配置文件的主要结构如下:
global:
# How frequently to scrape targets by default.
[ scrape_interval: <duration> | default = 1m ]
# How long until a scrape request times out.
[ scrape_timeout: <duration> | default = 10s ]
# How frequently to evaluate rules.
[ evaluation_interval: <duration> | default = 1m ]
# The labels to add to any time series or alerts when communicating with
# external systems (federation, remote storage, Alertmanager).
external_labels:
[ <labelname>: <labelvalue> ... ]
# File to which PromQL queries are logged.
# Reloading the configuration will reopen the file.
[ query_log_file: <string> ]
# Rule files specifies a list of globs. Rules and alerts are read from
# all matching files.
rule_files:
[ - <filepath_glob> ... ]
# A list of scrape configurations.
scrape_configs:
[ - <scrape_config> ... ]
# Alerting specifies settings related to the Alertmanager.
alerting:
alert_relabel_configs:
[ - <relabel_config> ... ]
alertmanagers:
[ - <alertmanager_config> ... ]
# Settings related to the remote write feature.
remote_write:
[ - <remote_write> ... ]
# Settings related to the remote read feature.
remote_read:
[ - <remote_read> ... ]
4. 抓取 Spring Boot 应用
Prometheus希望抓取或轮询单个应用程序实例以获取指标。 Spring Boot在 /actuator/prometheus 提供了一个actuator端点,以适当的格式提供Prometheus抓取。
为了以Prometheus服务器可以抓取的格式公开指标,需要依赖 micrometer-registry-prometheus
<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-prometheus</artifactId>
<version>1.6.4</version>
</dependency>
下面是一个示例 prometheus.yml
scrape_configs:
- job_name: 'spring'
metrics_path: '/actuator/prometheus'
static_configs:
- targets: ['HOST:PORT']
接下来,创建一个项目,名为prometheus-example
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.4.3</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.cjs.example</groupId>
<artifactId>prometheus-example</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>prometheus-example</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-prometheus</artifactId>
<scope>runtime</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
application.yml
spring:
application:
name: prometheus-example
management:
endpoints:
web:
exposure:
include: "*"
metrics:
tags:
application: ${spring.application.name}
这句别忘了: management.metrics.tags.application=${spring.application.name}
Spring Boot Actuator 默认的端点很多,详见
https://docs.spring.io/spring-boot/docs/2.4.3/reference/html/production-ready-features.html#production-ready-endpoints
启动项目,浏览器访问 /actuator/prometheus 端点
配置Prometheus抓取该应用
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
- job_name: 'springboot-prometheus'
metrics_path: '/actuator/prometheus'
static_configs:
- targets: ['192.168.100.93:8080']
重启服务
./prometheus --config.file=prometheus.yml
4.1. Grafana
https://grafana.com/docs/
https://grafana.com/tutorials/
下载&解压
wget https://dl.grafana.com/oss/release/grafana-7.4.3.linux-amd64.tar.gz
tar -zxvf grafana-7.4.3.linux-amd64.tar.gz
启动
./bin/grafana-server web
浏览器访问 http://localhost:3000
默认账号是 admin/admin
首次登陆后我们将密码改成admin1234
先配置一个数据源,一会儿添加仪表盘的时候要选择数据源的
Grafana官方提供了很多模板,我们可以直接使用
首先要找到我们想要的模板
比如,我们这里随便选了一个模板
可以直接将模板JSON文件下载下来导入,也可以直接输入模板ID加载,这里我们直接输入模板ID
立竿见影,马上就看到漂亮的展示界面了
我们再添加一个DashBoard (ID:12856)
原文链接:https://www.cnblogs.com/cjsblog/p/14434883.html
如果觉得本文对你有帮助,可以转发关注支持一下
相关推荐
- MIRIX重塑AI记忆:超Gemini 410%,节省99.9%内存,APP同步上线
-
MIRIX,一个由UCSD和NYU团队主导的新系统,正在重新定义AI的记忆格局。在过去的十年里,我们见证了大型语言模型席卷全球,从写作助手到代码生成器,无所不能。然而,即使最强大的模型依...
- 硬盘坏了怎么把数据弄出来对比10种硬盘数据恢复软件
-
机械硬盘或固态硬盘损坏导致数据丢失时,应立即停止对硬盘的读写操作,并根据损坏类型选择逻辑层恢复工具或专业物理恢复服务。紧急处置措施立即停止通电使用:发现硬盘异响、无法识别或数据异常时,需立即断开连接,...
- 蓝宝石B850A WIFI主板新玩法:内存小参调节体验
-
蓝宝石前段时间发布了一款性价比极高的主板:NITRO氮动B850AWIFI主板。这款主板的售价只要1349元,相比普遍1500元以上的B850主板,确实极具竞争力。虽然价格实惠,蓝宝石NITR...
- 内存卡损坏读不出怎么修复?这5个数据恢复工具汇总,3秒挽回!
-
在数字化生活的浪潮中,内存卡凭借小巧便携与大容量存储的特性,成为相机、手机、行车记录仪等设备存储数据的得力助手,承载着无数珍贵回忆与重要文件。然而,当内存卡突然损坏无法读取,无论是误删、格式化、病毒入...
- 内存卡修复不再难,2025年必学的6款软件工具
-
内存卡出现问题时,通常是因为文件系统损坏、物理损坏或病毒感染。通过专业的修复工具,我们可以尝试恢复数据并修复内存卡。内存卡修复利器:万兴恢复专家万兴恢复专家是一款功能强大的数据恢复软件,支持多种设备和...
- 有5款内存卡修复工具汇总,内存卡数据轻松找回!
-
在如今的数字时代,内存卡作为不可或缺的存储介质,广泛应用于相机、手机、行车记录仪等各类设备中,承载着我们珍贵的照片、视频以及重要文件。然而,数据丢失的风险却如影随形,误删、格式化、病毒入侵、硬件故障等...
- 揭秘:如何通过多种方式精准查询内存条型号及规避风险?
-
以下是内存条型号查询的常用方法及注意事项,综合了物理查看、软件检测、编码解析等多种方式:一、物理标签查看法1.拆机查看标签打开电脑主机/笔记本后盖找到内存条,观察标签上的型号标识。例如内存标签通常标...
- 内存卡数据恢复5个工具汇总推荐,轻松找回珍贵记忆!
-
在这个数字化时代,内存卡作为我们存储珍贵照片、重要文件的常用载体,广泛应用于手机、相机、平板电脑等设备。但数据丢失的意外却常常不期而至,误删除、格式化、病毒攻击,甚至内存卡的物理损坏,都可能让辛苦保存...
- 电脑内存智能监控清理,优化性能的实用软件
-
软件介绍Memorycleaner是一款内存清理软件。功能很强,效果很不错。Memorycleaner会在内存用量超出80%时,自动执行“裁剪进程工作集”“清理系统缓存”以及“用全部可能的方法清理...
- TechPowerUp MemTest64:内存稳定性测试利器
-
TechPowerUpMemTest64:内存稳定性测试利器一、软件简介TechPowerUpMemTest64,由知名硬件信息工具GPU-Z的出品公司TechPowerUp发布,是一款专为64位...
- 微软推出AI恶意软件检测智能体Project Ire,精确度高达98%
-
IT之家8月6日消息,当地时间周二,微软宣布推出可自主分析恶意软件的AI检测系统原型——ProjectIre。该项目由微软研究院、Defender研究团队及Discovery&a...
- 农村老木匠常用的20种老工具,手艺人靠它养活一家人,你认识几种
-
生活中的手艺老匠人是非常受到尊敬和崇拜的,特别是在农村曾经的老匠人都是家里的“座上宾”。对于民间传统的手艺人,有一种说法就是传统的八大匠:木匠、泥匠、篾匠、铁匠、船匠、石匠、油匠和剃头匠。木匠的祖始爷...
- 恶意木马新变种伪装成聊天工具诱人点击
-
国家计算机病毒应急处理中心通过对互联网监测发现,近期出现一种恶意木马程序变种Trojan_FakeQQ.CTU。该变种通过伪装成即时聊天工具,诱使计算机用户点击运行。该变种运行后,将其自身复制到受感染...
- 学习网络安全 这些工具你知道吗?
-
工欲善其事必先利其器,在新入门网络安全的小伙伴而言。这些工具你必须要有所了解。本文我们简单说说这些网络安全工具吧!Web安全类web类工具主要是通过各种扫描工具,发现web站点存在的各种漏洞...
- 5分钟盗走你的隐私照片,这个全球性漏洞到底有多可怕?
-
这个时代,大家对电脑出现漏洞,可能已经习以为常。但如果机哥告诉大家,这个漏洞能够在5分钟内,破解并盗取你所有加密文件,而且还无法通过软件和补丁修复...这可就有点吓人啦。事情是酱婶的。来自荷兰埃因...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- 如何绘制折线图 (52)
- javaabstract (48)
- 新浪微博头像 (53)
- grub4dos (66)
- s扫描器 (51)
- httpfile dll (48)
- ps实例教程 (55)
- taskmgr (51)
- s spline (61)
- vnc远程控制 (47)
- 数据丢失 (47)
- wbem (57)
- flac文件 (72)
- 网页制作基础教程 (53)
- 镜像文件刻录 (61)
- ug5 0软件免费下载 (78)
- debian下载 (53)
- ubuntu10 04 (60)
- web qq登录 (59)
- 笔记本变成无线路由 (52)
- flash player 11 4 (50)
- 右键菜单清理 (78)
- cuteftp 注册码 (57)
- ospf协议 (53)
- ms17 010 下载 (60)