几种最常用的串行数据传输总线(1)- SPI
cac55 2024-12-10 12:35 46 浏览 0 评论
串行数据总线由于占用较少的管脚被广泛应用在MCU和外设的连接中,在过去的几十年里,有三种最常用的多线串行数据传输格式SPI、I2C和UART。这3种串行总线的主要区别:
- SPI - Serial Peripheral Interface(串行外设接口),突出了外设,也就有了主(Master - 控制器)和从(Slave - 外设)之分,在总线中也就只有一个“主人”,其它都是处于服从的位置,也就是Slave,它是一种有时钟信号的同步串行总线,从器件的寻址是靠专用的片选信号线SS来实现的;
- I2C - Inter-Integrated Circuits(集成电路之间的连接),没有突出主次,也就是所有挂在总线上的器件都是平等的,它也是一种有时钟信号的同步串行总线,每个器件都有自己的地址,两根信号线都需要通过电阻上拉;
- UART - universal asynchronous receiver/transmitter(通用异步收/发),顾名思义,它是异步串行总线,传输的信号中没有专用的时钟信号线。
由于很多MCU、外设芯片为了节省管脚,都采用了管脚功能复用的方式,同一个管脚既可以用于SPI,也可以用于I2C,根据具体的器件连接方式进行选用。当器件的管脚配置为I2C的时候,要记住在I2C的两根信号线(SCL、SDA)上一定要有上拉电阻,SPI则不需要。
今天我们就先来说说SPI:
SPI(Serial Peripheral Interface - 串行外设接口)是一种用于短距离通信(主要是嵌入式系统中)的同步串行通信接口规范,这种接口由Motorola发明,已经成了一种事实标准。广泛用于各种MCU处理器中,同传感器,串行ADC、DAC、存储器、SD卡以及LCD等进行数据连接。
几乎所有的微处理器/微控制器都有SPI/I2C和UART接口,而且不止一个
SPI和I2C也被广泛用于传感器的数字接口连接
即便FPGA也将SPI和I2C做成了硬化的IP在芯片内
主要的信号线:
SPI总线由4根主要的信号线组成以实现数据在主设备(Master)和从设备(Slave)之间的全双工(收、发同时执行)同步(由时钟同步)通信:
- SCLK:串行时钟(由主设备输出),每个时钟周期将会移出一个新的数据位;
- MOSI:主设备输出?从设备输入,数据由主设备进入从设备,器件A上的MOSI线连接到器件B上的MOSI线。
- MISO:主设备输入? 从设备输出,数据由从设备送到主设备(或其它从设备,采用菊花链配置),器件A上的MISO线连接到器件B上的MISO线。
- SS(或SSN): 从设备选中(低电平有效),用于主设备控制从设备用,当该从选择信号线有效的时候表示主设备正在向相应的从设备发送数据或从相应的从设备请求数据。
SPI端口管脚的名字也有其它的叫法,不同的芯片公司叫法不同,比如:
- 串行输出: SCLK : SCK, CLK.
- 主输出 –> 从输入: MOSI:SIMO、SDI(for slave devices)、DI、DIN、SI、MTST.
- 主输入 ← 从输出: MISO:SOMI、SDO (for slave devices )、DO、DOUT、SO、MRSR.
- 从选择: SS: SSN、nCS、CS、CSB、CSN、EN、nSS、STE、SYNC.
主从器件之间的连接及数据传输方式
基本的主从配置
SPI允许将数据位从主设备移出到从设备,同时,可以将从设备的位移出到主设备中。
动画1显示数据从器件A移出到器件B,从器件B移出到器件 A.
动画2显示了通过一个虚拟的4通道示波器捕捉的两个器件之间SPI的转换
由于SPI未标准化,不同厂商的器件具体的定义不同,有的首先传输最高有效位(MSb),有的则是最低有效位(LSb),这需要我们认真阅读用到的相应器件的数据手册,以确定正确的数据处理方式。
4种传输模式:
每次数据传输都是先将SSN(有的器件命名为SS,从选择线)被驱动为逻辑低电平时开始。由时钟的极性(CPOL)和相位(CPHA)构成了4种不同的数据传输模式(0,1,2,3),分别对应四种可能的时钟配置。
- CPOL: 时钟的极性,它控制着时钟信号的初始逻辑状态。
- CPHA: 时钟相位,它控制了数据转换和时钟转换之间的关系。
时钟的极性和相位构成了4种不同的可能,也就有4种模式
在时钟周期的上升沿采样的位在时钟周期的下降沿移出,反之亦然。
具有非反相时钟极性(即,当从器件选择转换为逻辑低时,时钟处于逻辑低电平):
- 模式0:配置时钟相位使得数据在时钟脉冲的上升沿采样,并在时钟脉冲的下降沿移出。 这对应于上图中的第一个蓝色时钟轨迹。 请注意,数据必须在时钟的第一个上升沿之前可用。
- 模式1:配置时钟相位使得数据在时钟脉冲的下降沿采样,并在时钟脉冲的上升沿移出。 这对应于上图中的第二个蓝色时钟轨迹。
使用反相时钟极性(即,当从器件选择转换为逻辑低时,时钟处于逻辑高电平):
- 模式2:配置时钟相位,使得数据在时钟脉冲的下降沿采样,并在时钟脉冲的上升沿移出。 这对应于上图中的第一个橙色时钟轨迹。 请注意,数据必须在时钟的第一个下降沿之前可用。
- 模式3:配置时钟相位,使得数据在时钟脉冲的上升沿采样,并在时钟脉冲的下降沿移出。 这对应于上图中的第二个橙色时钟轨迹。
由于主设备一般为可以编程各种模式的控制器/处理器或者可以灵活编程的FPGA,因此在使用SPI连接的时候要认真阅读自己选用的从设备的工作模式,以便在时许上满足传输的要求。
主、从器件连接方式
通过多个从片选信号(SSN)配置
在标准的SPI配置中,主设备可以通过使能相应的从设备,即通过将相应设备的从选择线(SSN或SS)设置为逻辑低电平,通过共享的公共数据线将数据写入各个从设备或由各个从设备中读取数据。 应注意不要同时使能多个从设备,因为返回到主设备的数据将在MISO线路之间的驱动器上产生竞争导致无法进行数据的判读。 在某些应用中不需要将数据返回给主设备,在这种情况下,如果主设备想要将相同的数据发送到多个从设备,则可以同时寻址多个从设备。
在多从设备选择配置中,每个从设备都需要来自主设备的唯一从设备选择线(SS、SSN或CSn)。如果主设备没有足够的I/O引脚用于所需数量的从设备,则使用解码/解复用器(例如74HC(T)238(3到8线)来实现I/O扩展)。
菊花链配置
在这种配置中,数据从一个设备移动到下一个设备, 最终的从设备可以将数据返回给主设备(给FPGA编程的JTAG在给多个器件编程的时候也常用这种方式)。
在菊花链配置中,所有从设备共享一条公共的从选择线(SS)。 数据从主设备传输到第一个从设备,然后从第一个从设备传输到第二个从设备,依此下去,数据沿着线路级联,直到系列中的最后一个从设备,最后的一个从设备使用其MISO线路将数据传送到主设备。
这种配置非常适合于主设备的信号引脚有限的场景。
SPI的优缺点:
优点:
- 支持全双工通信
- 推挽驱动(跟漏极开路正相反)提供了比较好的信号完整性和较高的速度
- 比I2C或SMBus吞吐率更高
- 协议非常灵活支持“位”传输
不仅限于8-bit一个字节的传输
可任意选择的信息大小、内容、以及用途
- 异常简单的硬件接口:
一般来讲比I2C或SMBus需要的功耗更低,因为需要更少的电路(包括上拉电阻)
没有仲裁机制或相关的失效模式
“从设备”采用的是“主设备”的时钟,不需要精确的晶振
“从设备”不需要一个单独的地址 — 这点不像I2C或GPIB或SCSI
不需要收/发器
- 在一个器件上只用了4个管脚, 板上走线和布局连接都比并行接口简单很多
- 每个设备最多只有一个单独的从设备选择信号(SS、SSN、CSn);其它的都是共享的
- 信号都是单方向的,非常容易进行电流隔离
- 对于时钟的速度没有上限,有进一步提高速度的潜力,很多MCU的SPI传输速率可以高达50Msps,可用于数据采集以及图像的传输。
缺点:
- 相比于I2C总线需要更多的管脚, 即便是只用到3根线的情况下
- 没有寻址机制,在共享的总线连接时需要通过片选信号支持多个设备的访问
- 在从设备侧没有硬件流控机制(主设备一侧可以通过延迟到下一个时钟沿以降低传输的速率)
- 从设备无法进行硬件“应答”(主设备传送的信息无法确定传递到哪里,是否传递成功)
- 一般只支持一个主设备(取决于设备的硬件构成)
- 没有查错机制
- 没有一个正式的标准规范,无法验证一致性
- 相对于RS-232, RS-485, 或CAN-总线,只能近距离传输
- 存在很多的变种,很难能够找到开发工具(例如主适配卡)支持这所有的变种
- SPI不支持热交换(动态地增加一个节点).
- 如果想使用“中断”,只有通过SPI信号以外的其它信号线,或者采用类似USB1.1或2.0中的周期性查询的欺骗方式
应用举例:
小脚丫FPGA学习主板上的DAC、ADC、以及用于图形显示的液晶屏都是通过SPI接口连接的。
小脚丫FPGA主板的实物照片,外设基本都是通过SPI、I2C以及UART进行连接的
鉴于此,我们硬件工程师很有必要深入了解SPI、I2C以及UART的技术细节,尤其是传输信号线的连接以及传输的时序要求,争取能够自己通过FPGA来编程实现各种传输总线。
相关推荐
- MIRIX重塑AI记忆:超Gemini 410%,节省99.9%内存,APP同步上线
-
MIRIX,一个由UCSD和NYU团队主导的新系统,正在重新定义AI的记忆格局。在过去的十年里,我们见证了大型语言模型席卷全球,从写作助手到代码生成器,无所不能。然而,即使最强大的模型依...
- 硬盘坏了怎么把数据弄出来对比10种硬盘数据恢复软件
-
机械硬盘或固态硬盘损坏导致数据丢失时,应立即停止对硬盘的读写操作,并根据损坏类型选择逻辑层恢复工具或专业物理恢复服务。紧急处置措施立即停止通电使用:发现硬盘异响、无法识别或数据异常时,需立即断开连接,...
- 蓝宝石B850A WIFI主板新玩法:内存小参调节体验
-
蓝宝石前段时间发布了一款性价比极高的主板:NITRO氮动B850AWIFI主板。这款主板的售价只要1349元,相比普遍1500元以上的B850主板,确实极具竞争力。虽然价格实惠,蓝宝石NITR...
- 内存卡损坏读不出怎么修复?这5个数据恢复工具汇总,3秒挽回!
-
在数字化生活的浪潮中,内存卡凭借小巧便携与大容量存储的特性,成为相机、手机、行车记录仪等设备存储数据的得力助手,承载着无数珍贵回忆与重要文件。然而,当内存卡突然损坏无法读取,无论是误删、格式化、病毒入...
- 内存卡修复不再难,2025年必学的6款软件工具
-
内存卡出现问题时,通常是因为文件系统损坏、物理损坏或病毒感染。通过专业的修复工具,我们可以尝试恢复数据并修复内存卡。内存卡修复利器:万兴恢复专家万兴恢复专家是一款功能强大的数据恢复软件,支持多种设备和...
- 有5款内存卡修复工具汇总,内存卡数据轻松找回!
-
在如今的数字时代,内存卡作为不可或缺的存储介质,广泛应用于相机、手机、行车记录仪等各类设备中,承载着我们珍贵的照片、视频以及重要文件。然而,数据丢失的风险却如影随形,误删、格式化、病毒入侵、硬件故障等...
- 揭秘:如何通过多种方式精准查询内存条型号及规避风险?
-
以下是内存条型号查询的常用方法及注意事项,综合了物理查看、软件检测、编码解析等多种方式:一、物理标签查看法1.拆机查看标签打开电脑主机/笔记本后盖找到内存条,观察标签上的型号标识。例如内存标签通常标...
- 内存卡数据恢复5个工具汇总推荐,轻松找回珍贵记忆!
-
在这个数字化时代,内存卡作为我们存储珍贵照片、重要文件的常用载体,广泛应用于手机、相机、平板电脑等设备。但数据丢失的意外却常常不期而至,误删除、格式化、病毒攻击,甚至内存卡的物理损坏,都可能让辛苦保存...
- 电脑内存智能监控清理,优化性能的实用软件
-
软件介绍Memorycleaner是一款内存清理软件。功能很强,效果很不错。Memorycleaner会在内存用量超出80%时,自动执行“裁剪进程工作集”“清理系统缓存”以及“用全部可能的方法清理...
- TechPowerUp MemTest64:内存稳定性测试利器
-
TechPowerUpMemTest64:内存稳定性测试利器一、软件简介TechPowerUpMemTest64,由知名硬件信息工具GPU-Z的出品公司TechPowerUp发布,是一款专为64位...
- 微软推出AI恶意软件检测智能体Project Ire,精确度高达98%
-
IT之家8月6日消息,当地时间周二,微软宣布推出可自主分析恶意软件的AI检测系统原型——ProjectIre。该项目由微软研究院、Defender研究团队及Discovery&a...
- 农村老木匠常用的20种老工具,手艺人靠它养活一家人,你认识几种
-
生活中的手艺老匠人是非常受到尊敬和崇拜的,特别是在农村曾经的老匠人都是家里的“座上宾”。对于民间传统的手艺人,有一种说法就是传统的八大匠:木匠、泥匠、篾匠、铁匠、船匠、石匠、油匠和剃头匠。木匠的祖始爷...
- 恶意木马新变种伪装成聊天工具诱人点击
-
国家计算机病毒应急处理中心通过对互联网监测发现,近期出现一种恶意木马程序变种Trojan_FakeQQ.CTU。该变种通过伪装成即时聊天工具,诱使计算机用户点击运行。该变种运行后,将其自身复制到受感染...
- 学习网络安全 这些工具你知道吗?
-
工欲善其事必先利其器,在新入门网络安全的小伙伴而言。这些工具你必须要有所了解。本文我们简单说说这些网络安全工具吧!Web安全类web类工具主要是通过各种扫描工具,发现web站点存在的各种漏洞...
- 5分钟盗走你的隐私照片,这个全球性漏洞到底有多可怕?
-
这个时代,大家对电脑出现漏洞,可能已经习以为常。但如果机哥告诉大家,这个漏洞能够在5分钟内,破解并盗取你所有加密文件,而且还无法通过软件和补丁修复...这可就有点吓人啦。事情是酱婶的。来自荷兰埃因...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- 如何绘制折线图 (52)
- javaabstract (48)
- 新浪微博头像 (53)
- grub4dos (66)
- s扫描器 (51)
- httpfile dll (48)
- ps实例教程 (55)
- taskmgr (51)
- s spline (61)
- vnc远程控制 (47)
- 数据丢失 (47)
- wbem (57)
- flac文件 (72)
- 网页制作基础教程 (53)
- 镜像文件刻录 (61)
- ug5 0软件免费下载 (78)
- debian下载 (53)
- ubuntu10 04 (60)
- web qq登录 (59)
- 笔记本变成无线路由 (52)
- flash player 11 4 (50)
- 右键菜单清理 (78)
- cuteftp 注册码 (57)
- ospf协议 (53)
- ms17 010 下载 (60)